CHRISTIAN SOCIAL SERVICES COMMISSION (CSSC) NORTHERN ZONE JOINT EXAMINATIONS SYNDICATE (NZ-JES)

FORM SIX PRE-NATIONAL EXAMINATIONS 2023

132/3A

CHEMISTRY 3A

MARKING SCHEME

Question 1

Results:

The volume of the pipette used was 25cm³ The volume of the burette used was 50cm³

Burette readings

Titration Number	Pilot	1	2	3
Initial volume (cm ³)	26.30	25.00	25.00	25.00
Final volume (cm ³)	0.00	0.00	0.00	0.00
Volume used (cm ³)	26.30	25.00	25.00	25.00

(03 marks)

The average titre value

Titre value =
$$\frac{V_1 + V_2 + V_3}{3}$$
 (00¹/₂ marks)
Titre value = $\frac{25.00 + 25.00 + 25.00}{3}$ (00¹/₂ marks)

(**00^{<u>1</u>} marks**)

Summary:

25.00cm³ of Y required 25.00cm³ of X for complete reaction. (01 marks)

Questions:

(a) (i) Half reaction involved.

$$MnO_{4}^{-} + 8H^{+} + 5e^{-} \rightarrow Mn^{2+} + 4H_{2}O \quad (Reduction) \qquad (01 \text{ marks})$$

$$Fe_{2+} \rightarrow Fe^{3+} + e^{-} \quad (Oxidation)$$

(ii) The overall balanced ionic redox reaction.

$$MnO_4^- + 5Fe^{2+} + 8H^+ \longrightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O \qquad (01 \text{ marks})$$

- (iii) An oxident is $KMnO_4$ or MnO_4 . $(00^{\pm} \text{ marks})_2$ A reductant is FeSO₄ or Fe²⁺ ions $(00\frac{1}{2} \text{ marks})$
- (b) The indicator is not used, because KMnO₄ or MnO₄ ions is a self indicator due to its purple/pink colour which change in the process of reacting.

(01 marks)

(c) In this experiment only H_2SO_4 is used because HCl is oxidized to Cl_2 while HNO₃ is a strong oxidizing agent so instead of being used as medium for the reaction they interfere the reaction. (01 marks)

(d) Calculate:

(i) Concentration of FeSO₄.XH₂O in g/dm^3 13.9g of FeSO₄XH₂O= 500cm³ of distilled water $y = 1000 \text{ cm}^3$ $y = \frac{13.9 \times 1000}{500}$ $(00\frac{1}{2} marks)$ $y = 27.80 g/dm^3$ $(00\frac{1}{2} marks)$

The concentration of FeSO₄.XH₂O is 27.80g/dm³

(ii) Concentration of KMnO₄ in g/dm^3 0.79g of KMnO₄= 250cm³ of distilled water $x = 1000 \text{ cm}^3$ $x = \frac{0.79 \times 1000}{250}$ $(00\frac{1}{2} \text{ marks})$ $x = 3.16 g/dm^3$

 $(00\frac{1}{2} \text{ marks})$ The concentration of KMnO₄ is 3.16g/dm³

(iii) Molarity of KMnO₄

molarity=
$$\frac{\text{concentration}}{\text{molar mass}}$$
($00\frac{1}{2}$ marks)
molarity=
$$\frac{3.16}{158}$$
($00\frac{1}{2}$ marks)
molarity= 0.02mol/dm³

The molarity of KMnO₄ is 0.02mol/dm^3 ($00\frac{1}{2}$ marks) (iv) Molarity of FeSO₄ MFe²⁺ nFe²⁺ ×MnO₄⁻ ×VMnO₄⁻ 1

$$= \frac{1}{5 \times 0.002} \times 0.002 \times 0.002 \text{ marks}}$$

$$MFe^{2+} = \frac{5 \times 0.002}{1 \times 25.00} Fe^{2+}$$

$$(00_2 \text{ marks})$$

$$(00_2 \text{ marks})$$

$$MFe^{2+} = 0.1M$$
The Molarity of FeSO₄ or Fe²⁺ is 0.1M (00¹ marks)

(v) Concentration = molarity × molar mass
Concentration =
$$0.1 \times 152$$
(v) Concentration = 0.1×152
(v) Concentration = 0.1×152
(v) Concentration = 0.1×152

Concentration =
$$0.1 \times 152$$

Concentration = 15.29 g/dm³
The Concentration FeSO₄ is 15.29 g/dm³
($00^{\frac{1}{2}}$ marks)

(vi) Value of X in the formula $FeSO_4.XH_2O$

Mass of hydrated salt Mass of anhydrous Molar mass of anhydrous

 $\frac{27.8}{15.2} = \frac{152 + 18X}{152}$

X = 7

Alternative

 $FeSO_4.XH_2O = 278$

56+32+(16x4) + 18x = 278

X = 126/18 = 7

Table of results

a)

Salt	Volume of	Mass of salt	Initial	Final	$\Delta T = T2-T1$	Molar mass
	water V	(g)	temperature	temperature	(⁰ C)	of salt (Mr)
			of water	of solution		
			T1(⁰ C)	T2 (⁰ C)		
CuSO4	50	4	22	28	+6	160
CuSO4.5H2O	50	6	22	21	-1	250

(3 Marks)

b) Temperature change T= T2-T1 in each experiment

CuSO4 =28-22

$$\Delta T = +6^{0}C$$
For CuSO4.5H2O =21-22

$$\Delta T = -1^{0}C$$
(01 mark)
(01 mark)

Enthalpy of solution in each salt

For CuSO4

$$\Delta H = -(M \times C \times \Delta T)$$

= -(50 x 1 x 4.18 x 6)
= -1254J
4g = -1254J
160g/mol = X
X= -1254 x 160
4

Enthalpy of solution of CuSO4 is -50160J/mol (-50.160Kj/mol)

For CuSO4.5H2O

$$\Delta H = -(M \ x \ C \ x \ \Delta T)$$

= -(50 x4.18 x -1)
= 209 J
6g = 209 J
0g/mol = X
= 209 x 250

Then

$$250g/mol = X$$

 $X = 209 \times 250$
6

Enthalpy of solution of CuSO4.5H2O is 8708.33J/mol (8.708kJ/mol⁻¹)

-CuSO4, the heat given out on dissolving the salt is lower $(-50.160 \text{kJmol}^{-1})$ than expected value $(-66.10 \text{kJmol}^{-1})$, because some of heat is absorbed by Cu²⁺ ion during hydration of these ions.

 $Cu^{2+}{}_{(s)} \rightarrow Cu^{2+}{}_{(aq)}$ during hydration of these ions the heat energy is absorbed and is termed as Enthalpy of hydration.

-CuSO4.5H2O, the heat absorbed by this salt is lower since there are five water molecules per mole that is already present in the salt, so the only small amount of energy is required to hydrate one mole of the salt, that is why the decrease in enthalpy of solution.

Question 3

S/N	Experiment	Observation	Inferences	
1.	(a) To 1cm3 of first	White	Zn ²⁺ or Pb ²⁺ may be	
	portion of filtrate	precipitate	present. (01 Mark)	
	solution NaOH	soluble in		
	solution was added	excess NaOH		
	till excess.	was observed.		
		(01 Mark)		
	(b)To 1cm3 of second	White	Zn ²⁺ may be present.	
	portion of filtrate	precipitate	(01 Mark	
	solution NH ₄ OH	soluble		
	solution was added	in excess		
	till excess.	NH ₄ OH was		
		observed. (01		
		Mark)		
	(c)To 1cm3 of third	White	Cl ⁻ present,	
	portion of filtrate	precipitate	confirmed. (01	
	solution HNO ₃	insoluble in	Mark)	
	solution was added	HNO ₃ but		
	followed by AgNO ₃	soluble in		

	solution then NH ₃	NH ₃ solution.	
	solution.	(01 Mark)	
2.	(a) To residue in a tes-	Effervescence	CO_3^2 or HCO ₃ may
	tube concentrated HCl	observed	be present.(01 Mark)
	was added.	and the gas	
		evolved turn	
		lime water	
		to milky.(01	
		Mark)	
	(b)(i) To 1cm ³ of first	White	CO32- present,
	portion of residue	precipitates	Confirmed (01 Mark).
	solution MgSO ₄	observed.(01	
	solution was added.	Mark)	
	(ii) To 1cm ³ of second	Yellow ppt is	Pb ²⁺
	portion of residue	formed which	present, confirmed (01
	solution potassium	disappear on	Mark).
	iodide solution was	warming but	
	added and heated.	re-appear on	
		cooling.(01	
		Mark)	

Conclusion

(a)	The cations in sample P are Zn^{2+} and Pb^{2+} .	(00 <u>1</u>	marks)
(b)	The anions in sample P are Cl ⁻ and CO ²⁻ .	(00 <u>1</u>	2 marks) 2
(c)	Sample P is a mixture of ZnCl ₂ and PbCO ₃ or ZnCO ₃ and P	bCl ₂ .()2 marks)