

CHRISTIAN SOCIAL SERVICES COMMISSION

An Ecumenical Body of Tanzania Episcopal Conference and Christian Council of Tanzania **DO Box 9433** Dar os Salaam Tanzania

P.O. Box 9433, Dar es Salaam, Tanzania

CSSC-SOUTHERN ZONE FORM FOUR JOINT EXAMINATION

032/2A CHEMISTRY 2A (MARKING GUIDE)

Time 2:30 hours

AUGUST 2024,

Burette reading

1.

Experiment	Pilot	1	2	3
Final burette reading (cm ³)	13.00	12.50	12.50	12.50
Initial burette reading (cm ³)	0.00	0.00	0.00	0.00
Volume used (cm ³)	13.00	12.50	12.50	12.50
•				

(04 Marks)

Pipette used was 25 cm³ and the burette used = 50cm³ (01 Marks)

Note: if 20.00 cm³ pipette was used the volume of acid will be 10.00 cm³

Volume volume = $\frac{V_1+V_2+V_3}{3}$ (00 $\frac{1}{2}$ Marks)

$$=\frac{12.50\ cm^3+12.50\ cm^3+12.50\ cm^3}{2}$$
 (00¹/₂ Marks)

$$=\frac{37.50\ cm^3}{3}$$

= 12.50 cm^3 (00 $\frac{1}{2}$ Marks)

 \therefore The mean titre volume = 12.50 cm³ (00 $\frac{1}{2}$ Marks)

(a) (i) Yellow to Orange/Pink. (01 Mark)

(ii) 25 cm³ of solution G required 12.5 cm³ of solution F₁ (01 Mark)

(b) Chemical equation for the reaction between F₁ and G

$$H_2Q_{(aq)} + 2NaOH_{(aq)} \rightarrow 2H_2O_{(g)} + Na_2Q_{(aq)}$$
 (01 Marks)

(c) (i) Solution.

Data given

Mass of F: (m) = 49.0*g*; Volume of solution (v) = $1dm^3$ Mass of sodium hydroxide: *NaOH*, (m₁) = 4.00g; Volume of solution (v) = $1000cm^3$ or $1dm^3$ Molarity of G = ?

Molarity of Base $(M_b) = \frac{Concentration of base}{Molar mass of NaOH} \Rightarrow \frac{4.00 g/dm^3}{40g/mol} = 0.1M$

: Molarity of
$$F = 0.1 M$$

Molarity of F1 = ?

From: $\frac{M_A V_A}{M_B V_B} = \frac{n_A}{n_B}$; but $V_A = 12.5 cm^3$, $V_B = 25 cm^3$, $n_A = 1$, $n_B = 2$, $M_b = 0.1M$, $M_a = ?$

$$M_a = \frac{M_b V_b n_a}{V_a n_b} = \frac{0.1M \times 25cm^3 \times 1}{12.5cm^3 \times 2} = 0.1M$$

 \therefore = Molarity of F1 = 0.1M (02 Marks)

Volume of concentrated Acid $(V_c) = 20 \ cm^3$ Volume of diluted Acid $(V_d) = 100 \ cm^3$ Molarity of diluted Acid $(M_c) =$? Then, from; Dilution law $M_c V_c = M_d V_d \rightleftharpoons M_d = \frac{M_c V_c}{Vd} \rightleftharpoons \frac{0.1 \ M \times 100 \ cm^3}{20 \ cm^3}$ \therefore Molarity of $\mathbf{F} = Molarity \ 0.5 \ M$

(ii) Molar mass of **F**=?

From: $Molarity = \frac{Concentration}{Molar mass} \Rightarrow Molar mass = \frac{Concentration}{Molarity} \Rightarrow \frac{49g/dm^3}{0.5Mol/dm^3} = 98 g/mol$ $\therefore Molar mass of H_2Q = 98 g/mol.$ (02Marks) (iii) Molecular mass of Q =? From; $H_2Q = 98 g/mol; \Rightarrow Q + (1 \times 2) = 98 g/mol$ Q + 2 = 98 g/mol

Q = 96

: Molecular mass of Q = 96 (01 Marks)

(d) Q is Sulphate ion (SO_4^{2-}) and the formula of F is H_2SO_4 (02 Marks)

(e) Properties of F which is an acid.

- It turns blue litmus paper red.
- It is corrosive.
- It reacts with metals to liberate hydrogen gas
- It reacts with base to form salt and water.
- It reacts with carbonates to form salt, carbon dioxide and water.
- It reacts with ammonia gas to form ammonium salts
- It has sour taste (Any two; 1@ =2 Marks)

Properties of G which is a base

- It has a bitter taste
- It turns red litmus paper blue
- Have a soap or slippery feel
- It reacts with acids to form salt and water (Any two; 1@ =2 Marks)

(f) It is important to swirl the contents when adding acid in order to mix well the contents with the indicator and Fasten the reaction. (01Marks)

(g) The sources of errors

- Using contaminated solution
- Misreading the volume
- Dirty apparatuses (01@ = 03Marks)
- 2.

S/N	OBSERVATIONS	INFERENCES	
a)	White powder	NH4 ⁺ , Na ⁺ ,Zn ²⁺ ,Ca ²⁺ ,Pb ²⁺ may be present	
b)	No gas evolved	SO_4^{2-} of Na ⁺ , Ca ²⁺ , Pb ²⁺ may be present	
		Cl ⁻ of Na ⁺ , Pb ²⁺ may be present	
		CO_3^{2-} of Na ⁺ may be present	
	Residue reddish brown when hot and yellow	Pb ²⁺ may be present	
	when cold		
c)	Colourless gas evolved, which forms white	Cl ⁻ may be present	
	dense fumes with ammonia gas.		
d)	Insoluble in cold water but soluble in hot water.	Cl ⁻ of Pb ²⁺ may be present	
	Crystals reappear on cooling.		
	i) White precipitates were formed, insoluble in	Pb ²⁺ may be present	
	excess		
	ii)Yellow precipitates were formed which	Pb ²⁺ confirmed	
	disappear on warming but re-appears on cooling		
	iii) White precipitates were formed	Cl ⁻ confirmed	

(16 Marks = @ 01Mark)

Conclusion

- (ii) The anion in sample **R** is \underline{Cl}^2 **01Mark**
- (iii) The chemical formula of sample **R** is <u>PbCl₂</u> **1.5Mark**

(iv)The chemical name of sample **R** is Lead (II) chloride **1.5Mark**

b) With state symbols, write the balance chemical reaction that took place between the chemical formula in sample R in (iii) and silver nitrate
PbCl_{2(s)} + 2AgNO_{3 (aq}) → 2AgCl_(s) + Pb(NO₃)_{2(aq}) 02Marks

c) Mention two uses of a group of salt of sample **R** in daily life process (any two points)

- i. It used in house hold especially sodium chloride as food additive for taste.
- ii. It used by dentist to cement the cavities of teeth eg MgCl₂. 03 marks @ 1.5 mark
- iii. It used in the manufacture of dry batteries eg. Zinc chloride with the mixture of ammonium chloride. *02Marks*

a) (i) The cation in sample **R** is $\underline{Pb^{2+}}$ **01Mark**