CHRISTIAN SOCIAL SERVICES COMMISSION CSSC – SOUTHERN ZONE, FORM FOUR JOINT EXAMINATION 2024 MARKING GUIDE 041 BASIC MATHEMATICS

2

1	•	(a) Let x =Total number of people in the				
		village				
		Therefore,				
		$\frac{1}{6}x$ people died				
		People remained = $x - \frac{1}{6}x$				
		$=\frac{5}{6}x$ people				
		$\frac{1}{3}$ of remainder $=\frac{1}{3} \times \left(\frac{5}{6}x\right)$				
		$=\frac{5}{18}x$ people				
		People remained = $\frac{5}{6}x - \frac{5}{18}$				
$=\frac{5}{9}x$ People						
		Therefore, $\frac{5}{9}x$ People = 840				
		x = 1512 people				
		∴ People left the village is:				
		$\frac{5}{18} \times 1512 = 420$ People.				
	(b) Given the LCM = 90 and HCF = 6					
		Then,				
		$LCM = 2 \times 2 \times 3 \times 5 = 90$				
	and HCF = $2 \times 3 = 6$					
	The first number is $2 \times 3 \times 3 \times 5 = 18$ The second number is $2 \times 2 \times 5 = 20$					
		The second number is $2 \times 3 \times 5 = 30$				
		\therefore The two numbers are 18 and 30				
2	2.	(a) $5^{3x-4} - 25 = 3100$ $5^{3x-4} = 3100 + 25 = 3125$ $5^{3x-4} = 5^5$				
		Therefore, $3x - 4 = 5$				
		3x = 4 + 5 = 9				
		$\therefore x = 3$				

(b)
$$\log\left(\frac{35}{8}\right) + 4\log 2 - \log 2 - \log 7$$

$$= \log\left(\frac{35}{8}\right) + 3\log 2 - \log 7$$

$$= \log 35 - \log 8 + 3\log 2 - \log 7$$

$$= \log 35 - \log 2^3 + 3\log 2 - \log 7$$

$$= \log 35 - 3\log 2 + 3\log 2 - \log 7$$

$$= \log 35 - \log 7$$

$$= \log\left(\frac{35}{7}\right) = \log 5$$

$$\therefore \log\left(\frac{35}{8}\right) + 4\log 2 - \log 2 - \log 7 = \log 5$$
(c) Given the expression $\frac{\sqrt{x} + \sqrt{x^3}}{1 + \sqrt{x}}$

$$\frac{\sqrt{x} + \sqrt{x^3}}{1 + \sqrt{x}} = \frac{\sqrt{x} + \sqrt{x^3}}{1 + \sqrt{x}} \times \frac{\sqrt{x} - \sqrt{x^3}}{\sqrt{x} - \sqrt{x^3}}$$

$$= \frac{(\sqrt{x} + \sqrt{x^3})(\sqrt{x} - \sqrt{x^3})}{(1 + \sqrt{x})(\sqrt{x} + \sqrt{x^3})}$$

$$= \frac{x - x^3}{x - x^2 + \sqrt{x} + \sqrt{x} + \sqrt{x}}$$

$$\therefore \frac{\sqrt{x} + \sqrt{x^3}}{1 + \sqrt{x}} = \frac{x - x^3}{x - x^2 + \sqrt{x} + \sqrt{x} + \sqrt{x^3}}$$

(a) The equation of the position vectors is: $R(13,4) = a\{p(2,2)\} + b\{q(3,2)\}$ (13,4) = a(2,2) + b(3,2)(13,4) = (2a,2a) + (3b,2b)Therefore, $2a + 3b = 13 \dots \dots (i)$ $2a + 2b = 4 \dots \dots \dots (ii)$ Solving (i) and (ii) above, a = -7 amd b = 9(b) The point (-1,7) satisfies the equation: v = ax + bTherefore, $7 = -a + b \dots \dots (i)$ The points of l_2 are (0.3,0) and (0, -1.5) Or in fraction are $\left(\frac{3}{10}, 0\right)$ and $\left(0, -\frac{3}{2}\right)$ The slope of this line is $\frac{0+\frac{3}{2}}{\frac{3}{2}-0} = \frac{3}{2} \div \frac{3}{10}$ $=\frac{3}{2}\times\frac{10}{3}=\frac{10}{2}=5$ \therefore It's slope is 5. Therefore, the slope of the $l_1 = -\frac{1}{5} = -0.2$, which is the value of *a*. From 7 = -a + b, $7 = -\left(-\frac{1}{5}\right) + b$ $7 = \frac{1}{5} + b$ 35 = 1 + 5b5b = 35 - 1 = 34 $b = \frac{34}{5} = 6.8$ $\therefore (a,b) = \left(-\frac{1}{5}, \frac{34}{5}\right) = (-0.5, 6.8)$

4

(a) Note: the perimeter of the square is same 5 as the circumference of a semi circle. But perimeter is $4 \times 27 = 108 \ cm$ Therefore. $108 = \frac{\pi d}{2} + d$ (d is the diameter of the circle) $216 = \pi d + 2d$ $d(2 + \pi) = 216$ $d = \frac{216}{2+\pi} = \frac{216}{2+\frac{22}{7}} = \frac{7 \times 216}{14+22}$ $d = \frac{1512}{36} = 42$ But d = 2r $\therefore 2r = 42$ and r = 21It's area is $\pi r^2 = \frac{22}{7} \times 21 \times 21$ $= 1386 \ cm^2$ (b) A quadrilateral is a four sided figure Formula for the length of a side is: $s = 2r\sin\left(\frac{180}{n}\right)$ $s = 2(10) \sin\left(\frac{180}{4}\right)^{\circ}$ $= 20 \sin 45^{\circ}$ $= 20 \times 0.7071$ = 14.14 cm \therefore The length of the side is 14.14 cm (a) For the information given, 6 $z_1 = \frac{kx}{y}$ x increased by 12% i.e. x + 12% of x = 1.12xAlso y decreased by 20%, *i.e.* y - 20% of y = 0.8y. Then, the new quantity of z is $z_2 = \frac{1.12kx}{0.8y}$ Then change in z is $z_2 - z_1$ $=\frac{1.12kx}{0.8y}-\frac{kx}{y},$ $=\frac{kx}{v}\left(\frac{1.12}{0.8}-1\right)$ $=\frac{kx}{v}(0.4)$

6 (a) but $\frac{kx}{v} = z_1$ therefore, the coefficient of z_1 , 0.4 is the decimal increase in z. This increase in percentage form is $0.4 \times 100\% = 40\%$. (b) If 1 Pound = 112 Ksh, then $120 Pound = 120 \times 112 Ksh$ = 13440 KshFor accommodation = Ksh 1000 Remainder = (13440 - 1000)= 12440 $\frac{1}{4} \times 12440 = Ksh \ 3110$ (For transport) 12440 - 3110 = Ksh 9330But, 1 Pound = 112, therefore, $Ksh 9330 = \frac{9330}{112}$ Pound = 83.3 *Pound* \therefore The amount remained after transport and accommodation = 83.3 Pound(a) Let x = Boys and y = Girls $x + y = 630 \dots \dots (i)$ x: v = 3: 2 $\frac{x}{y} = \frac{3}{2}$ $y = \frac{2}{3}x\dots\dots(ii)$ Solve (*i*) and (*ii*) (x, y) = (378, 252)Now total students after the admission of 90 students is 630 + 90 = 720 students.

7

7 (a) Let b = Boys and g = Girls $b + g = 720 \dots (i)$ b: a = 7:5 $\frac{b}{a} = \frac{7}{5}$ $g = \frac{5}{7}b\dots\dots(ii)$ Solve (i) and (ii) (b, g) = (420, 300) \therefore New admitted boys = 420 - 378 = 42(b) (i) Required: Gross Profit and Net Profit. From, Gross profit = Sales less Cost of goods sold Where by, Cost of Goods Sold=COGAS- Closing Stock But. COGAS = Opening Stock + Purchases = 80,000 + 250,000= 330,000COGS = COGAS – Closing Stock = 330,000 - 50000COGS = 280,000Gross profit = Sales - COGS= 380,000 - 280,000 = 100,000 \therefore Gross profit = 100,000 = (ii) Total Expenses = Electricity + Discount Allowed = 40,000 + 20,000 = 60,000Net Profit = Gross Profit – Total Expenses = 100,000 - 60,000 = 40,000 \therefore Net Profit = =40,000

8. (a) From, $A_n = P\left(1 + \frac{r}{100}\right)^n$ $A_2 - A_1 = 6384$ $P\left(1+\frac{r}{100}\right)^2 - P\left(1+\frac{r}{100}\right)^1 = 6384$ $P(1+0.14)^2 - P(1+0.14) = 6384$ 1.29969P - 1.14P = 6384P=40000 \therefore She invested sh 40,000 (b) $S_n = \frac{N}{2}(2A_1 + (n-1)d)$ $10000 = \frac{10}{2} \left(2A_1 + (10 - 1)(-8) \right)$ $10000 = 5(2A_1 - 72)$ $2000 = 2A_1 - 72$ $2000 = 2(A_1 - 36)$ $1000 = A_1 - 36$ $\therefore A_1 = 1000 + 36 = 1036$ 6 9. (a) h h 30° -100 -x ___100 m_ $\tan 30^\circ = \frac{h}{100-x}$ $100 - x = \frac{h}{\tan 30^{\circ}}$ $x = 100 - \frac{h}{\tan 30^\circ}$ $x = \frac{100 \tan 30^{\circ} - h}{\tan 30^{\circ}} \dots \dots (i)$

10 (b) Let the two parts be x and y and x be the large part Then, $x^2 + y^2 = 20 \dots \dots (i)$ And, $x^2 = 8y \dots \dots \dots (ii)$ Substitute (ii) in (i) $8y + y^2 = 20$ $y^2 + 8y - 20 = 0$ y = -10 or 2Using a positive y = 2, $x^2 = 8y$ $= 8 \times 2$ = 16 $x = \pm 4$ \therefore The positive numbers are 2 and 4

SECTION B

11 (a) (i) **The Frequency Distribution Table**

Marks	Χ	f	fx
5 - 14	9.5	3	28.5
15 - 24	19.5	7	136.5
25 - 34	29.5	12	354
35 - 44	39.5	20	790
45 - 54	49.5	30	1485
55 - 64	59.5	15	892.5
65 - 74	69.5	8	556
75 - 84	79.5	3	238.5
85 - 94	89.5	2	176
		∑f=100	∑fx=4660

(ii) Median Class is
$$45 - 54$$

(iii) Mean $= \frac{\sum fx}{\sum f} = \frac{4660}{100} = 46.6$
(b) $\overline{AD}^2 = \overline{AB} \times \overline{AP}$
Since D is the mid point of \overline{AC}
 $\overline{AD} = \frac{1}{2}\overline{AC} = \frac{1}{2}\overline{AB}$
 $\overline{AD}^2 = \frac{1}{4}\overline{AB}^2$
 $\frac{1}{4}\overline{AB}^2 = AB \times AP$
 $\overline{AB}^2 = 4AB \times AP$
 $AB = 4AP$. Hence proved

12 (a) $(WX)^2 = 900$ $\therefore WX = 30 \text{ cm}$ But = $RY = \frac{600}{WY} = \frac{600}{30} = 20 \text{ cm}$ From $(XY) \times (RY) = 300$ $XY = \frac{300}{PV} = \frac{300}{20} = 15$ cm : Dimensions are 15 cm, 20 cm and 30 cm (ii) Total surface area is 2(600+300) $= 1800 \text{ cm}^2$ (iii) Volume = Lenght \times Width \times Height $= 15 \times 20 \times 30$ $= 9000 \ cm^3$ (b) The central angle subtended by the Earths arc is $60 + 60 = 120^{\circ}$ Distance is $\theta 60 \cos 75^\circ$ nautical miles (Along small circle) $= 120 \times 60 \cos 75$ $= 7200 \times 0.2588$ = 18630.5 nauticalmiles 13. (a) Let x = shirt cost and y = trouser cost 5x + 3y = 17503x + y = 850 $\begin{pmatrix} 5 & 3 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1750 \\ 850 \end{pmatrix}$ $Determinant = (5 \times 1) - (3 \times 3)$ = 5 - 9= 4Inverse matrix is $\begin{pmatrix} -\frac{1}{4} & \frac{3}{4} \\ \frac{3}{4} & -\frac{5}{4} \end{pmatrix}$

13. (a) Inverse matrix is
$$\begin{pmatrix} -\frac{1}{4} & \frac{3}{4} \\ \frac{3}{4} & -\frac{5}{4} \end{pmatrix}$$

$$\begin{pmatrix} 5 & 3 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{4} & \frac{3}{4} \\ \frac{3}{4} & -\frac{5}{4} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\frac{1}{4} & \frac{3}{4} \\ \frac{3}{4} & -\frac{5}{4} \end{pmatrix} \begin{pmatrix} 1750 \\ 850 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 200 \\ 250 \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 200 \\ 250 \end{pmatrix}$$

$$\therefore$$
 The shirt and trouser cost are sh 200 and 250 respectively
(b) For the given transformation matrix, Image, $\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
The image of A(1, -1) = $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

$$a - b = 1 \dots \dots \dots (i)$$

$$c - d = 1 \dots \dots (ii)$$
The image of C(3, -2) = $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix}$

$$3a - 2b = 3 \dots (iii)$$

$$3c - 2d = 4 \dots (iv)$$
Solving (i), (ii), (iii) and (iv)
Gives $a = 1, b = 0, c = 2$ and $d = 1$
Then the matrix is $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$
The image of B(1, -4) = $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -4 \end{pmatrix}$

$$\therefore$$
 The image is (1, -2)

Therefore, 28 products and 12 products should be produced to make a maximum profit of 37,600 per week

Corner Points	f(x,y)=1000x+800y	Value
(0,0)	1000(0) + 800(0)	0
(0,27)	1000(0) + 800(27)	21600
(35,0)	1000(35) + 800(0)	35000
(28,12)	1000(28) + 800(12)	37000