CHRISTIAN SOCIAL SERVICES COMMISSION CSSC – SOUTHERN ZONE, FORM TWO JOINT EXAMINATION 2024

MARKING GUIDE

BASIC MATHEMATICS

(a) The solution is the GCF of 100 and 140 which 1. is 20 \therefore They did so 20 times (b) Given $a = 0.\dot{2}\dot{5}$ and $b = 0.\dot{5}$ Then. 100a = 25.25Therefore, $100a - a = 25.\dot{2}\dot{5} - 0.\dot{2}\dot{5}$ 99a = 25 $a = \frac{25}{99}$ And 10b = 5.5 $10b - b = 5.\dot{5} - 0.\dot{5}$ 9h = 5 $b = \frac{5}{9}$ Therefore, $\frac{a}{b} = \frac{25}{99} \div \frac{5}{9}$ $=\frac{25}{99}\times\frac{9}{5}=\frac{5}{11}$ $\therefore \frac{a}{b} = \frac{5}{11}$ (c) Let x = Total balls in the bag. Then. $x = \frac{1}{4}x + \frac{1}{8}x + \frac{1}{2}x + 26$ Multplying by 8 the equation above 8x = 2x + x + 4x + 2088x = 7x + 208x = 208 \therefore There 208 balls in the bag

041

 $2|(a) 6.8125 \approx 7$, $0.0695 \approx 0.07$ and $1.9812 \approx 2$ $\frac{7}{0.07 \times 2} = \frac{7}{1.4} = \frac{70}{1.4} = 5$ $\therefore \frac{6.8125}{0.0695 \times 1.9812} \approx 5$ (b) (i) $0.156 \ km = 0.156 \times 1000 \ m = 156 \ m$ And $0.0312 \ km = 0.0312 \times 1000 \ m = 31.2 \ m$ Area = $(156 \times 31.2) m^2 = 4867.2 m^2$ (ii) Perimeter = 2(0.156 + 0.0312)km $= 2 \times 0.1872$ $= 0.3744 \, km$ (iii) A side has trees $\frac{156}{4} + 1 = 39 + 1 = 40$ For both sides, there $40 \times 2 = 80$ trees. 2|(c) The distance in km for two day is 2×24 km $= 48 \ km$ The distance in metres is $48 \times 1000 m$ = 48000 m3|(a) The total interior angles of a pentagon is 540° The sum of three unknown angle are $540^{\circ} - (58^{\circ} + 83^{\circ})$ $= 540^{\circ} - 141^{\circ}$ $= 339^{\circ}$

(a) Total ratio 6 + 5 + 4 = 153. The smallest angle is $\frac{4}{15} \times 399 = 106.4^{\circ}$ (b) Area of a trapezium is $\frac{1}{2}h(a+b)$ $2700 = \frac{1}{2} \times 12(a + 300)$ 2700 = 6(a + 300)a + 300 = 450a = 450 - 300 = 150 \therefore The length is 150 cm (a) (i) From $b^2 = 4ac$ 4. $(a+3)^2 = 4 \times 4 \times 9$ $a + 3 = \pm \sqrt{(4 \times 4 \times 9)} = \pm (4 \times 3) = \pm 12$ a + 3 = +12 $\therefore a = -15 \text{ or } 9$ (ii) Given the expression $(9792)^2 - 9292 \times 9792$ = 9792(9792 - 9292) $= 9792 \times 500$ $\therefore (9792)^2 - 9292 \times 9792 = 4896000$ (b) A candidate is required to show that $ax^2 + bx + c = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (a) Let L, and W = Length and 5. Width of the rectangle. Then, Perimeter 2(L + W) = 800 $\therefore L + W = 400 \dots \dots \dots (i)$ Also, W: L = 3:5 $\frac{W}{I} = \frac{3}{5}$

From $L + \frac{3L}{5} = 400$ 5L + 3L = 2000L = 250From, $W = \frac{3L}{5}$ $W = \frac{3 \times 250}{5} = 3 \times 50 = 150$ \therefore The dimensions are: Length = 250 cm and Width = 150 cm(b) % Loss = $\frac{Loss Made}{Costs} \times 100\%$ $\%Loss = \frac{Costs - Sales}{Costs} \times 100\%$ $30\% = \frac{Costs - 35000}{Costs} \times 100\%$ \therefore Costs = 50000 %Profit = $\frac{\text{Profit Made}}{\text{Costs}} \times 100\%$ $\%Profit = \frac{Sales - Costs}{Costs} \times 100\%$ $=\frac{64000-50000}{50000}\times100\%$ $=\frac{14000}{50000} \times 100\%$ = 28% \therefore The percentage profit = 28%

6. (a) The points
$$(1, -2)$$
 and $(4,1)$ satisfy the
equation, $ax + by = 12$,
Therefore, $a(1) + b(-2) = 12$
 $a - 2b = 12 \dots (i)$
 $4a + b = 12 \dots (ii)$
 $\therefore (a, b) = (4, -4)$
(b)
y-Axis
B(-4,-2)
o(5,3)
B(-4,-2)
o(5,-3)
7. (a) (i) $(3)^{x+2} \div (5)^{2y-6} = 2025$
 $(3)^{x+2} \times (5)^{6-2y} = 2025 = (3^4)(5^2)$
 $3^{x+2} = 3^4$
 $x + 2 = 4$
 $x = 2$
 $5^{6-2y} = 5^2$
 $6 - 2y = 2$
 $2y = 6 - 2 = 4$
 $y = 2$
 $\therefore (x, y) = (2, 2)$
(ii) $\frac{2+\sqrt{3}}{\sqrt{2}-\sqrt{3}} \times \frac{\sqrt{2}+\sqrt{3}}{\sqrt{2}+\sqrt{3}} = \frac{(2+\sqrt{3})(\sqrt{2}+\sqrt{3})}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}$
 $= \frac{2\sqrt{2} + 2\sqrt{3} + \sqrt{6} + 3}{2 - 3}$
 $= -(2\sqrt{2} + 2\sqrt{3} + \sqrt{6} + 3)$

7 (b) $2\log x = \log(2x - 3) + \log 4$ $2\log x = \log 4(2x - 3)$ $\log x^2 = \log 4(2x - 3)$ $x^2 = 4(2x - 3)$ $x^2 = 8x - 12$ $x^2 - 8x + 12 = 0$ $\therefore x = 2 \text{ or } 6$ 8 (a) $\Delta PST \approx \Delta PQR$ Therefore, $\frac{PT}{PR} = \frac{TS}{QR}$ $PT = \frac{240}{16}$ $\therefore PT = 15 \text{ cm}$ And $\frac{PS}{PQ} = \frac{TS}{QR}$ $\frac{12}{12+s} = \frac{10}{16}$ 120 + 10s = 192 \therefore QS = 7.2 (b) F F $H\square$ ·Ε ≻G H∟ HG = HE (Given) $F\hat{H}G = F\hat{H}E = 90^{\circ}$ FH is common side $\therefore \Delta EFH \equiv \Delta FHG$ (By SSS Theorem)

9. (a)
5 m
$$8$$
 m
By Pythagoras theorem
 $b^2 = 8^2 - 5^2$
 $b^2 = 64 - 25$
 $b^2 = 39$
 $b = 6.245$
 \therefore The solution is 6.245 m
(b) (i)
30 m 45°
Tan 45° = $\frac{30}{x}$
 $x \tan 45^{\circ} = 30$ but $\tan 45^{\circ} = 1$
Then $x = 30$
 \therefore The distance is 30 m.
(ii) By Pythagoras theorem
Using figure in part (i) above
 $C^2 = 30^2 + 30^2$
 $= 900 + 900$
 $= 1800$
Then, $C = \sqrt{1800}$
 $= 42.43$
 \therefore The distance is 42.43 m

(a) Using the Venn Diagrams Let E = English and F = French-240 20 60 60 E-F х 20 + 60 + 60 + x = 240*x* = 100 \therefore There are 100 tourists speak neither **English nor Frech** (b) (i) If $72^{\circ} = 10 m^2$ then, $360^\circ = \frac{360}{72} \times 10m^2$ $= 50 m^2$ Therefore, total area is $50 m^2$ (ii) If $72^{\circ} = 10 m^2$ then, $126^{\circ} = \frac{126}{72} \times 10m^2$ $= 17.5 m^2$ \therefore The area occupied by onion is 17.5 m^2