

CSSC-SOUTHERN ZONE FORM FOUR JOINT EXAMINATION 2024

(ACTUAL PRACTICAL A)

PHYSICS 2A MARKING GUIDE 2024

1. (d) Table of results

_

X(cm)	t(s)	$T = \frac{t}{10}(s)$) $T^2(s^2)$	(02 Marks@) =10 marks
70	19.50	1.95	3.80	
60	18.45	1.85	3.42	
50	17.33	1.73	2.99	
40	16.33	1.63	2.66	
30	14.84	1.48	2.19	

(f) (i) From the graph,

Slope (m) =
$$\frac{\Delta T^2}{\Delta x}$$

= $\frac{(3.7-1.9)}{(68-22)}$
= $\frac{1.8s^2}{46cm}$
= $0.039s^2/cm \approx 0.04 \frac{s^2}{cm}$ (01 mark)
= $0.04s^2/cm$

From the graph, <u>T²- intercept of the graph is 1s²</u> (01Mark)

(ii) Given that T= $2\pi \sqrt{\frac{(x+y)}{g}}$,

Squaring both sides of the equation becomes;

$$T^2 = \frac{4\pi^2 x}{g} + \frac{4\pi^2 y}{g}$$
.....(i)

Compare equation (i) with the equation of a straight line;

Therefore;

$$m = \frac{4\pi^2}{g}$$
$$g = \frac{4\pi^2}{m}$$
$$g = \frac{4\times(3.14)^2}{0.04\frac{s^2}{cm}}$$
$$g = 985.96\frac{cm}{s^2}$$

:. The acceleration due to gravity is 9.86m/s² (01 mark)

Also T²- intercept=
$$\frac{4\pi^2 y}{g}$$

T²= my
 $y = \frac{T^2}{m}$

$$y = \frac{1s^2}{0.04\frac{s^2}{cm}}$$

y = 25cm

:.The value y is of 25cm (01 mark)

(iii) The physical significance of y is that, it is the value of length of the cotton thread fixed on a simple pendulum system. $(\frac{001}{2} mark)$

(g) Three sources of error are;

- (i) Air resistance
- (ii) Large angle of displacement of the bob $\left(\frac{001}{2} \max \right)$

(iii)Time reaction

2. (d) Table of results;

А	r	sinr	$Sin(90^0 - \alpha)$	[
30 ⁰	350	0.574	0.866	(02 marks @)
40^{0}	310	0.515	0.766	
50^{0}	25 ⁰	0.423	0.643	
60 ⁰	19 ⁰	0.326	0.500	
700	130	0.225	0.342	

(f) From the graph slope (m) is given by;

$$m = \frac{\Delta sinr}{\Delta sin(90^{0} - \alpha)}$$
$$m = \frac{(0.54 - 0.3)}{(0.8 - 0.44)}$$
$$m = \frac{0.24}{0.36}$$
$$m = 0.67$$

:. The slope (m) of the graph is 0.67 ($01\frac{1}{2}$ marks)

NB: the value of slope ranges from 0.65 to 0.68

(g) From;

$$m = sinC$$

 $C=sin^{-1}(m)$
 $C=sin^{-1}(0.67)$
 $C = 42.07^{0}$

:. The value of C is 42.07⁰ (02 mark)

NB: the value of C ranges from 41^0 to 43^0

(h) C is the critical angle of the rectangular glass prism (01 mark)

